

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

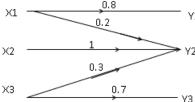
Subject with Code: Analog Communications(16EC415) Course & Branch: B.Tech - ECE

Year & Sem: III B.Tech & I Sem **Regulation:** R16

<u>UNIT –I</u>

1.	a.	Draw the block diagram of communication system.	[L2] [3M]
	b.	Explain the function of each block of communication system.	[L2] [7M]
2.	a.	Explain radio frequency spectrum & its application used in communication system with a neat Sketch.	[L2] [6M]
	b.	Explain the concept of frequency mixing.	[L2] [4M]
3.	a.	What is meant by modulation and explain the benefits of modulation.	[L1] [6M]
	b.	Explain the difference between analog and digital signals.	[L2] [4M]
4.	a.	Draw the waveforms and spectrum of Amplitude Modulation (AM) for an arbitrary baseband signal x(t).	[L2] [5M]
	b.	With necessary expressions, Explain single-tone AM.	[L2] [5M]
5.	a.	With the help of circuit diagram explain the operation of square-law diode modulator & demodulator for AM.	[L2] [6M]
	b.	An AM transmitter radiates 9kW of power when the carrier is un-modulated and 10.125kW of power when the carrier is sinusoidal modulated. Find the modulation index & Percentage modulation. Now if another sine wave corresponding to 40% modulation is transmitted Simultaneously. Calculate total radiated power	[L4] [4M]
6.	a.	A given AM broadcast station transmits a total power of 5kW when the carrier is modulated by sinusoidal signal with a modulation index of 0.7071. Determine Carrier power and Transmission Efficiency.	[L3] [4M]
	b.	1	[L2] [6M]
7.	a.	Derive an expression for the power content and transmission efficiency of single tone amplitude modulated signal.	[L4] [6M]
	b.	Draw the frequency spectrum of DSB-SC modulation with necessary mathematical expressions.	[L6] [4M]
8.	a.	Draw the neat circuits and equivalent circuits (for different modes) of ring modulator using diodes for generating DSB-SC signal.	[L6] [5M]
	b.	Generate DSB-SC signal with the help of ring modulator using diodes, with a neat sketch of waveforms.	[L6] [5M]
9.	a.	Derive an expression for SSB-SC wave using the concept of pre-envelope.	[L4] [6M]
	b.	The total power content of AM signal is 1kW.Determine the power being transmitted at the carrier frequency and each of the sidebands when the % modulation is 100.	[L3] [4M]
10.	Wı	rite short notes on:	
	a.	Synchronous detection for SSB-SC.	[L1] [3M]
	b.	Frequency discrimination method of AM SSB – SC generation.	[L1] [3M]
	c.	Spectrum of VSB.	[L1] [4M]

$\underline{UNIT-II}$


			
1.	a.	Explain the concept of Instantaneous frequency.	[L2] [5M]
	b.	Derive the expression for single - tone frequency modulation with necessary waveforms.	[L5] [5M]
2.	a.	Obtain the necessary expression for single tone NBFM.	[L5] [4M]
	b.	Explain the generation of Narrowband Frequency Modulation and Narrowband Phase Modulation with suitable block diagrams.	[L2] [6M]
3.	a.	Expand the expression for FM signal in terms of Bessel functions.	[L2] [6M]
	b.	Explain the generation of FM using direct method.	[L2] [4M]
4.	a.	Explain the functionality of each block of phase shift discriminator.	[L2] [7M]
_	b.	Draw the block diagram of indirect FM method.	[L1] [3M]
5.	a.	Define modulation index, carrier swing and percentage modulation of FM.	[L1] [3M]
6	b.	Explain the necessity of each block of indirect FM method.	[L2] [7M]
6.	a.	A 20 MHz carrier is frequency modulated by a sinusoidal signal such that the peak frequency deviation is 100 kHz. Determine the modulation index and the	[L2] [6M]
		approximate bandwidth of the FM signal if the frequency of the modulating	
		signal is: (i) 1 kHz (ii) 15 kHz	
	b.	Describe zero crossing detector.	[L2] [4M]
7.	a.	With the necessary circuit and voltage to frequency characteristics, explain the functionality of balanced slope detector for FM.	[L2] [5M]
	b.	Compare slope detector and balanced slope detector.	[L4] [5M]
8.	a.	Write short note on Pre-Emphasis and De-Emphasis circuits.	[L4] [5M]
٠.	b.	Explain non-linear effects in FM system.	[L2] [4M]
9.	a.	Discuss about the transmission bandwidth of FM signal.	[L3] [4M]
	b.	A 107.76MHz carrier signal is frequency modulated by a 7kHz sine wave. The	[L1] [6M]
		resultant FM signal has a frequency deviation of 50kHz. Determine carrier	
		swing, highest & lowest frequencies of frequency modulated signal, and	
4.0		modulation index of FM wave.	
10.	a.	Discuss about FM transmitter.	[L1] [3M]
	b.	A single-tone FM is represented by the voltage equation as: $v(t) = 12\cos(6v \cdot 106t + 5\sin(1250t))$ Determine the following:	[L4] [7M]
		 (6×106t + 5sin 1250t) Determine the following: (i) Carrier frequency (ii) Modulating frequency (iii) Modulation index (iv) What 	
		power will this FM wave dissipate in 10Ω resistors?	
		power win this I wi wave dissipate in 1022 resistors.	
		<u>UNIT – III</u>	
1.	a.	Discuss about different sources of noise.	[L1] [5M]
	b.	What is meant by narrow band noise and explain time domain representation of	[L1] [5M]
		narrow-band noise.	[][-]
2.	a.	Write a short note on external noise sources.	[L2] [5M]
	b.	Describe thermal noise and shot noise.	[L3] [5M]
3.	a.	If each stage has a gain of 10dB and noise figure of 10dB. Calculate the overall	[L4] [5M]
		noise figure of a two-stage cascaded amplifier.	
	b.	Give the Quadrature representation of Narrow-band noise.	[L1] [5M]
4.	a.	Explain the concept of narrowband noise plus sine wave.	[L2] [5M]
5	b.	Explain noise equivalent bandwidth.	[L2] [5M]
5.	a. b	Explain effective noise temperature and noise figure.	[L2] [5M]
	b.	A radio receiver with 10KHz bandwidth has a noise figure of 30dB. Determine the signal power required at the input of receiver to achieve input SNR at 30dB.	[L4] [5M]
		the signal power required at the hiput of receiver to achieve hiput SINK at 300B.	

6. 7.	Ob a.	tain the expression for figure of merit of AM(DSB-FC) system. Explain the noise performance of DSB-SC scheme with the help of neat block	[L1] [10M] [L2] [6M]
	b.	diagram The noise figure of a receiver is 20dB and it is fed by a low noise amplifier which has gain of 40dB and noise temperature of 80°K. Calculate the overall noise temperature of the receiving system and the noise temperature of the receiver.	[L4] [4M]
8.	a.	Calculate the noise figure for an SSB-SC system.	[L3] [5M]
	b.	Compare the noise performance in frequency modulated system and amplitude modulated system.	[L4] [5M]
9.	a.	Obtain the expression for output SNR of FM system.	[L1] [7M]
	b.	Explain (i) Signal to Noise Ratio (ii) Figure of merit (iii) Friis formula	[L5] [3M]
10.	a.	Discuss about noise effect in PM and obtain expression for figure of merit.	[L4] [6M]
	b.	Calculate thermal noise power available from any resistor at room temperature	[L2] [4M]
		290K for a bandwidth of 2MHz and also calculate noise voltage at 100Ω	
		resistor.	
		<u>UNIT – IV</u>	
1.	a		[L2] [5M]
	b	State and prove sampling theorem.	[L1] [5M]
2	а	Describe Nyauist rate & Nyauist interval	[L5] [3M]

1.	a.	Explain natural and frattop sampling techniques	
	b.	State and prove sampling theorem.	[L1] [5M]
2.	a.	Describe Nyquist rate & Nyquist interval.	[L5] [3M]
	b.	Sketch the spectrum of sampled signal at (i) f _s =2f _m ; (ii) f _s >2f _m and (iii) f _s <2f _m	[L4] [7M]
3.	a.	Explain the sampling reconstruction for low-pass signals.	[L2] [5M]
	b.	Explain generation of PAM with mathematical analysis.	[L2] [5M]
4.	a.	Explain the demodulation of PAM signals.	[L2] [5M]
	b.	Write the advantages and disadvantages for PAM.	[L1] [5M]
5.	a.	Explain the transmission bandwidth of PAM signal.	[L2] [5M]
	b.	Discuss about synchronization in PAM.	[L4] [5M]
6.	a.	What sampling rate and sampling interval would be appropriate for a	[L1] [3M]
		television video channel with a maximum bandwidth of 4 MHz?	
	b.	Explain the frequency spectrum of Flat Top PAM signal.	[L2] [7M]
7.	a.	What is the need for pulse modulation systems?	[L1] [3M]
	b.	With block diagram explain the generation of PWM signals.	[L2] [7M]
8.	Wi	th a neat sketch, explain the detection/ demodulation of Pulse Duration	[L2] [10M]
	Mo	odulation.	
9.	a.	What are the differences between PAM, PWM, and PPM?	[L4] [7M]
	b.	Explain how PPM can be generated from PWM signals	[L2] [3M]
10.	a.	Explain about demodulation of PPM signal.	[L1] [3M]
	b.	For a pulse-amplitude modulated transmission of voice signal having	[L5] [7M]
		maximum frequency equal to 3kHz, calculate the transmission bandwidth. It	
		is given that the sampling frequency 8kHz and pulse duration 0.1T _{s.}	

UNIT - V

1.	a.	Explain about sensitivity, selectivity and fidelity.	[L2] [5M]
	b.	Draw block diagram of Super-heterodyne AM receiver and explain function	[L5] [5M]
		of each block.	
2.	a.	Explain Super-heterodyne FM receiver	[L1] [5M]
	b.	Describe the disadvantage of Super-heterodyne AM receiver	[L1] [5M]
3.	a.	Write short notes on receiver parameters.	[L3] [5M]
	b.	For a broadcast Super-heterodyne AM receiver having no RF amplifier, the loaded	[L4] [5M]
		Quality factor of the antenna coupling circuit is 100.Now, if the intermediate	
		frequency is 455kHz; determine the image frequency and its rejection ratio at an	
		incoming frequency of 1000kHz.	
4.	a.	With a neat sketch explain Quadrature amplitude modulation technique.	[L1] [5M]
	b.	Explain about Frequency Division Multiplexing	[L2] [5M]
5.	a.	Explain about Time Division Multiplexing	[L2] [5M]
	b.	Compare TDM and FDM techniques.	[L4] [5M]
6.	a.	Write short note on measure of information and entropy.	[L1] [5M]
	b.	Derive the expression for condition of maximum entropy.	[L2] [5M]
7.	a.	Explain Entropy, Information rate, Channel capacity theorem, Mutual	[L5] [7M]
		information.	
	b.	Explain Shannon's encoding algorithm.	[L1] [3M]
8.	a.	Explain (i) Conditional entropy	[L4] [5M]
		(ii) Find the entropy the source that emits one of the three symbols A, B, C in	
		a statistically independent sequence with probabilities ½,1/4 and ¼.	
	b.	A Discrete source emits one of 5 symbols once every millisecond. The	[L2] [5M]
		symbol Probabilities are 1/2, 1/4, 1/8, 1/16 and 1/16. Find entropy and	
		information rate?	
9.		Consider a binary input, output channel shown below:	[L3] [10M]
		0.8	

Find H(X),H(Y),H(X|Y),H(Y|X) and H(XY)

- Write a short note on channel capacity of a Discrete memory less channel. 10. [L2] [4M] [L4] [6M]
 - A voice grade telephone channel has a bandwidth of 3400Hz.If the signal to noise ratio on the channel is 30dB; determine the capacity of the channel. If the above channel is to be used to transmit 4.8kbps of data determine minimum SNR required on the channel.